cho a;b;c>0 thỏa mãn abc+ab+bc+ca=2.tìm min của
\(P=\frac{1}{ab+a+b}+\frac{1}{bc+b+c}+\frac{1}{ca+c+a}\)
Cho a,b,c>=0 tm ab+bc+ca=1.Tìm Min B=\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
cho các số thực dương a,b,c thỏa mãn \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\) 1 tìm GTNN của P = \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)
Cho a;b;c>0 thoả mãn: \(\frac{1}{1+a}+\frac{2}{2+b}+\frac{3}{3+c}\le1\) 1. Tìm min S=abc
cho a,b,c >0
cmr \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)
cmr \(\frac{\sqrt{ab}}{c+2\sqrt{ab}}+\frac{\sqrt{bc}}{a+2\sqrt{bc}}+\frac{\sqrt{ca}}{b+2\sqrt{ca}}\le1\)
cho a>0, b>0, c>0, a+b+c=1
tìm min của S=\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\)
\(\frac{a}{1+2b^2}+\frac{b}{1+2c^2}+\frac{c}{1+2a^2}\)Cho a,b,c>0 và ab+bc+ca=3 Tìm min P =
\(A=\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\)cho ab+bc+ca=abc và a,b,c>0 Tìm min
1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:
\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)
2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)
3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
4,Cho a,b,c>0.
Tìm GTLN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)