cho ba số thực dương a,b,c. cmr : \(\sqrt[3]{5a^2b+3}+\sqrt[3]{5b^2c+3}+\sqrt[3]{5c^2a+3}\le\frac{21}{12}\left(a+b+c\right)+\frac{1}{4}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
help me!
Cho a, b, c thỏa mãn ab+bc+ca=3 CMR
\(\sqrt[3]{\frac{a}{b\left(b+2c\right)}}+\sqrt[3]{\frac{b}{c\left(c+2a\right)}}+\sqrt[3]{\frac{c}{a\left(a+2b\right)}}\ge\frac{3}{\sqrt[3]{3}}\)
cho a,b,c>0.CMR \(\sqrt{\frac{2a}{a+b}}+\sqrt{\frac{2b}{b+c}}+\sqrt{\frac{2c}{c+a}}< =3\)
Cho a, b, c >0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2=a^2b^2c^2\)
Chứng minh rằng: \(\Sigma_{cyc}\frac{1}{\sqrt{a^5+b^5}}\le\sqrt{\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}}\)
Cho a;b;c>0.CMR:
\(\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}+\sqrt[3]{\frac{b^2+ca}{abc\left(c^2+a^2\right)}}+\sqrt[3]{\frac{c^2+ab}{abc\left(a^2+b^2\right)}}\ge\frac{9}{a+b+c}\)
Cho a,b,c là độ dài 3 cạnh tam giác.Tìm GTLN của biểu thức P=\(\sqrt{\frac{2a}{2b+2c-a}}+\sqrt{\frac{2b}{2c+2a-b}}+\sqrt{\frac{2c}{2a+2b-c}}\)
a,b,c>0. CM: \(\frac{1}{\sqrt{a}}+\frac{3}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\ge\frac{16\sqrt{2}}{\sqrt{3\left(a+b+c\right)}}\)
Cho a,b,c la cac so thuc >0
Cmr \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}>=1\)
Hi :D
Sau đây là một số bài mình sưu tầm được và mình post lên đây nhầm mong muốn các bạn đóng góp lời giải của mình vào
Câu 1:
Với a,b,c là các số thực dương và \(abc=1\).Chứng minh rằng:
\(\frac{1}{4a^2-2a+1}+\frac{1}{4b^2-2b+1}+\frac{1}{4c^2-2c+1}\ge1\left(\cdot\right)\)
Câu 2:
Với a,b,c là các số thực dương và \(abc=1\).Chứng minh rằng:
\(\frac{1}{\sqrt{4a^2+a+4}}+\frac{1}{\sqrt{4b^2+b+4}}+\frac{1}{\sqrt{4c^2+c+4}}\le1\left(\cdot\cdot\right)\)
Câu 3:
Với a,b,c,d là các số thực dương và \(\frac{1}{a+3}+\frac{1}{b+3}+\frac{1}{c+3}+\frac{1}{d+3}=1\).Chứng minh rằng:
\(\frac{a}{a^2+3}+\frac{b}{b^2+3}+\frac{c}{c^2+3}+\frac{d}{d^2+2}\le1\left(\cdot\cdot\cdot\right)\)
Câu 4:
Với a,b,c,d thõa mãn điều kiện \(a+b+c+d=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\),Chứng minh rằng:
\(2\left(a+b+c+d\right)\ge\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}+\sqrt{d^2+3}\left(\cdot\cdot\cdot\cdot\right)\)
Câu 5:
Với a,b,c là các số thực không âm.Chứng minh rằng:
\(\frac{a^2-bc}{2a^2+b^2+c^2}+\frac{b^2-ca}{a^2+2b^2+c^2}+\frac{c^2-ab}{a^2+b^2+2c^2}\ge0\left(\cdot\cdot\cdot\cdot\cdot\cdot\right)\)
Continue...