Có \(\sqrt{2a+b+1}\le\frac{2a+b+1+4}{4}\)
Tương tự \(\sqrt{2b+c+1}\le\frac{2b+c+1+4}{4},\sqrt{2c+a+1}\le\frac{2c+a+1+4}{4}\)
\(\Rightarrow A\le\frac{2a+b+1+2c+a+1+2b+c+1+4+4+4}{4}=6\)
dấu = xảy ra khi a=b=c và a+b+c=3=>a=b=c=1
Có \(\sqrt{2a+b+1}\le\frac{2a+b+1+4}{4}\)
Tương tự \(\sqrt{2b+c+1}\le\frac{2b+c+1+4}{4},\sqrt{2c+a+1}\le\frac{2c+a+1+4}{4}\)
\(\Rightarrow A\le\frac{2a+b+1+2c+a+1+2b+c+1+4+4+4}{4}=6\)
dấu = xảy ra khi a=b=c và a+b+c=3=>a=b=c=1
Cho a,b,c\(\ge0\)thỏa mãn\(a+b+c=1\)
a)Tìm max A=\(\sqrt{2a^2+a+1}+\sqrt{2b^2+b+1}+\sqrt{2c^2+c+1}\)
b)Tìm min,max B=\(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\)
c)Tìm min,max C=\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\)
Cho a, b, c >0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2=a^2b^2c^2\)
\(\Sigma_{cyc}\frac{1}{\sqrt{a^5+b^5}}\le\sqrt{\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}}\)
Cho a, b, c >0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2=a^2b^2c^2\)
\(\Sigma_{cyc}\frac{1}{\sqrt{a^5+b^5}}\le\sqrt{\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}}\)
Cho a, b, c >0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2=a^2b^2c^2\)
\(\Sigma_{cyc}\frac{1}{\sqrt{a^5+b^5}}\le\sqrt{\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}}\)
Cho a,b,c là số thực dương. Biết a+b+c=1
Tìm GTNN của bt :
a) \(A=\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\)
b) \(B=\sqrt{2a^2-3ab+2b^2}+\sqrt{2b^2-3bc+2c^2}+\sqrt{2c^2-3ca+2a^2}\)
Cho a,b,c dương thỏa mãn a+b+c=2. Tìm Max:
\(P=\frac{ab}{\sqrt{ab+2c}}+\frac{bc}{\sqrt{bc+2a}}+\frac{ca}{\sqrt{ca+2b}}\)
Tìm GTNN của bt biết : a+b+c=1
a) \(A=\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+c^2}\)
b) \(B=\sqrt{2a^2-3ab+2b^2}+\sqrt{2b^2-3bc+2c^2}+\sqrt{2c^2-3ca+2b^2}\)
Nhanh giúp tui nha =)
cm voi moi so duong a b c thi
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\left(1+\sqrt{2}+\sqrt{3}\right)\left(\frac{1}{a+\sqrt{2b}+\sqrt{3a}}+\frac{1}{b+\sqrt{2c}+\sqrt{3a}}+\frac{1}{c+\sqrt{2a}+\sqrt{3b}}\right)\)
Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!
Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).
Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:
\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).
Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).
Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng:
a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).
b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).
c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).
Bài 5: Cho a,b,c >0. Chứng minh rằng:
\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).