cho a, b, c >=0 và a+b+c<=6
tìm GTNN của M=\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
cho a, b, c >0 và a+b+c<=3
tìm GTNN của \(B=\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\)
Cho a,b>0; \(a+b\le1.\) Tìm GTNN của biểu thức \(P=a^2+b^2+\dfrac{1}{a^2}+\dfrac{1}{b^2}\)
Tìm GTNN của :
a) \(A=\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)với a, b > 0
b) \(B=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)với a, b, c > 0
c) \(C=\left(a+b+c+d\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)với a, b, c, d > 0
a, Chứng minh bất đẳng thức a2+b2+2 ≥ 2(a+b)
b,Cho hai số thực x,y thỏa mãn điều kiện: x^2+y^2 = 1. Tìm GTLN và GTNN của x+y
c, Cho a,b > 0 và a+b = 1. Tìm GTNN của S=\(\dfrac{1}{ab}\)+1/a2+b2
Bài 1: Cho x+y=1 (x>0,y>0). Tìm giá trị nhỏ nhất(GTNN) của:
a. \(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)
b. \(\dfrac{a^2}{x}\)+\(\dfrac{b^2}{x}\)
c. (x+\(\dfrac{1}{x}\))\(^2\) +(y+\(\dfrac{1}{y}\))\(^2\)
Bài 2: Tìm GTNN của: x\(^2\)+y\(^2\)+\(\dfrac{2}{xy}\) với x,y cùng dấu
Bài 3: Cho các số dương x,y thỏa mãn: \(\dfrac{1}{x^2}\)+\(\dfrac{1}{y^2}\)=\(\dfrac{1}{2}\). Tìm GTNN của:
a. A=xy
b. B=x+y
Tìm GTNN của
a) \(A=\dfrac{\left(x+100\right)^2}{x}\)
b) \(B=\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left(x^6+\dfrac{1}{x^6}\right)-2}{\left(x+\dfrac{1}{x}\right)^3+\left(x^3+\dfrac{1}{x^3}\right)}\) với x > 0
Cho x + y = 1, x > 0, y > 0. Tìm GTNN của
a) \(\dfrac{1}{x}+\dfrac{1}{y}\)
b) \(\dfrac{a^2}{x}+\dfrac{b^2}{y}\)( a và b là hằng số dương đã cho )
c) \(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\)
Câu 1: Giải PT:
a) 2x2 - 6x + 1 = 0
b) x3 + x = 2
c) (x-2)(x+1) < 0
d) \(\dfrac{2x-5}{x+5}\) > 0
Câu 2: Chứng minh bất đẳng thức sau:
a) 2x - x2 \(\le\) 1 với mọi x
b) A = (a+b)\(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)\(\ge\) 4
c) B = \(\dfrac{a+b}{c}+\dfrac{b+a}{a}+\dfrac{c+a}{b}\ge6\) (a,b,c > 0)
d) \(\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}\ge\dfrac{1}{2}\) (a,b dương; a+b=4ab)