\(P=\left(a^2+\dfrac{1}{16a^2}\right)+\left(b^2+\dfrac{1}{16b^2}\right)+\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\ge2\sqrt{\dfrac{a^2}{16a^2}}+2\sqrt{\dfrac{b^2}{16b^2}}+\dfrac{15}{32}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\)
\(P\ge1+\dfrac{15}{32}.\left(\dfrac{4}{a+b}\right)^2\ge1+\dfrac{15}{32}.\left(\dfrac{4}{1}\right)^2=\dfrac{17}{2}\)
\(P_{min}=\dfrac{17}{2}\) khi \(a=b=\dfrac{1}{2}\)