Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Nguyễn Linh Chi

Cho ba số a,b,c khác 0 và ab+bc+ac=0. Tính giá trị của biểu thức

A=\(\dfrac{\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}}{\dfrac{bc}{a^2+2bc}+\dfrac{ac}{b^2+2ac}+\dfrac{ab}{c^2+2ab}}\)

Akai Haruma
1 tháng 3 2019 lúc 2:33

Lời giải:

Xét tử :

\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}=\frac{a^2}{a^2+bc+(-ab-ac)}+\frac{b^2}{b^2+ac+(-ab-bc)}+\frac{c^2}{c^2+ab+(-bc-ac)}\)

\(=\frac{a^2}{a(a-b)-c(a-b)}+\frac{b^2}{b(b-c)-a(b-c)}+\frac{c^2}{c(c-a)-b(c-a)}\)

\(=\frac{a^2}{(a-c)(a-b)}+\frac{b^2}{(b-a)(b-c)}+\frac{c^2}{(c-a)(c-b)}\)

\(=\frac{a^2(c-b)+b^2(a-c)+c^2(b-a)}{(a-b)(b-c)(c-a)}\)

\(=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)

Xét mẫu (tương tự bên tử)

\(\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}=\frac{bc}{(a-c)(a-b)}+\frac{ac}{(b-a)(b-c)}+\frac{ab}{(c-a)(c-b)}\)

\(=\frac{bc(c-b)+ac(a-c)+ab(b-a)}{(a-b)(b-c)(c-a)}=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(a-b)(b-c)(c-a)}\)

\(=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)

Do đó:

\(A=\frac{1}{1}=1\)


Các câu hỏi tương tự
Linh
Xem chi tiết
nguyễn thanh huyền
Xem chi tiết
Võ Thị Kim Dung
Xem chi tiết
wcdccedc
Xem chi tiết
Diễm My Võ
Xem chi tiết
Diễm My Võ
Xem chi tiết
Phượng Hoàng
Xem chi tiết
Nguyễn Thiện Minh
Xem chi tiết
Trần Thị Tuyết Ngân
Xem chi tiết