ta có:
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac
<=>(a+b+c)^2=a^2+b^2+c^2+2.(ab+bc+ac)
=>0^2 = 1 +2.(ab+bc+ac)
=>ab+bc+ac = -1/2 (ab+bc+ac)2=a2b 2+a2c 2+b2c 2+ab2c+a2bc+abc2
<=>(ab+bc+ac)2=a2b 2+a2c 2+b2c 2+abc.(a+b+c)
=> (-1/2)2=a2b 2+a2c 2+b2c 2+abc.0 =>a2b 2+a2c 2+b2c 2=1/4
suy ra:
(a2+b2+c2 ) 2=a4+b4+c4+a2b 2+a2c 2+b2c 2
=>12=a4+b4+c4+1/4
=>a4+b4+c4=1-1/4=3/4
:A