Cho a,b,c>0 CMR: a, \(\frac{a+b}{a+b+c}+\frac{6b+8c}{2a+b}+\frac{3a+2b+c}{b+c}\ge7\)b, \(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+4a}+\frac{c+a}{c+a+16b}\ge\frac{16}{15}\)
Cho a,b,c>0 va a+b+c=1
Tìm GTNN \(P=\frac{1}{25a}+\frac{1}{16b}+\frac{1}{9c}\)
Cho a;b;c >0. Tìm GTNN của
\(A=\frac{4a}{a+b+2c}+\frac{b+3c}{2a+b+c}-\frac{8c}{a+b+3c}\)
cho a; b; c > 0 CMR : \(\frac{25a}{b+c}+\frac{c}{a+b}+\frac{16b}{a+c}>8\)
cho a, b, c, d >0 tìm GTNN của A= \(\frac{a+b}{b+c+d}+\frac{b+c}{c+d+a}+\frac{c+d}{d+a+b}+\frac{d+a}{a+b+c}\)
Cho a,b,c,d>0.Tìm GTNN của F=\(\frac{a+b}{b+c+d}+\frac{b+c}{c+d+a}+\frac{c+d}{d+a+b}+\frac{d+a}{a+b+c}\)
Tìm GTNN của P=\(\frac{4a}{b+c-a}+\frac{9b}{c+a-b}+\frac{16c}{a+b-c}\)biết a,b,c là ba cạnh của 1 tam giác
1, cho a>0 b>0 thỏa mãn a+b=5.Tòm GTNN của P=\(\frac{1}{a}\)+\(\frac{1}{b}\)
2/cho a>0,b>0,c>0 và a+b+c=1 Tìm GTNN của A=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
cho a,b,c>0 Tìm GTNN của \(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{\sqrt{2c}}{a+b}\)