a,b,c>0 a+b+c=1 cmr B=căn (a^2-ab+b^2)+căn(b^2-bc+c^2)+căn(c^2-ac+a^2)>=1
cho a,b,c>0 và a+b+c=1 cmr căn(4a+1)+căn(4b+1)+căn(4c+1)<5
cho a,b,c >1 Cmr a/ ( căn b -a) + b/ (căn c -1) + c/(căn a -1 ) >= 12
Cho a;b;c>1 CMR a/(căn b-1)+b/(căn c-1)+1?(căn a-1)>= 12
a,b,c>0: a+b+c=2. CMR a/căn(4a+3bc) + b/căn(4b+3ac) + c/căn(4c+3ab) <=1
Cho a,b > 0, C khác 0 sao cho 1/a + 1/b +1/c = 0 Chứng minh căn (a+b) = căn(a+c) + căn(b+c)
1, x,y,z>=0 ; x+y+z =< 1. cmr: căn(x^2+1/y^2) + căn(y^2+1/z^2) + căn(x^2+1/z^2) >= căn82
2, a,b,c > 0. cm 1/a + 4/b + 9/c >= 36/(a+b+c)
Cho a; b; c; d là 4 số dương thỏa mãn ab.cd=1. CMR: (căn(1+a)+căn(1+b)).(căn(1+c)+căn(1+d))>=8
1. x, y, z >=0.
Chứng minh rằng: 4(xy+yz+xz)<=Căn((x+y)(y+z)(x+z))(căn(x+y)+căn(y+z)+căn(x+z)).
2. Cho a, b, c>0 thỏa 1/a+1/b+1/c=3.
Tìm GTLN của P=1/căn(a2-ab+b2)+1/căn(b2-bc+c2)+1/căn(c2-ca+a2)