\(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}=\frac{1}{\left(a+b\right)^2-2ab-c^2}+\frac{1}{\left(b+c\right)^2-2bc-a^2}+\frac{1}{\left(c+a\right)^2-2ac-b^2}=\frac{1}{\left(a+b+c\right)\left(a+b-c\right)-2ab}+\frac{1}{\left(b+c+a\right)\left(b+c-a\right)-2cb}+\frac{1}{\left(c+a+b\right)\left(c+a-b\right)-2ac}=-\frac{1}{2}.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=-\frac{1}{2}.\frac{c+a+b}{abc}=-\frac{1}{2}\)