\(\text{Áp dụng bất đẳng thức cô-si ta có: }\)
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{acb^2}{ac}}=2\sqrt{b^2}=2b\)
\(\text{tương tự: }\frac{bc}{a}+\frac{ca}{b}\ge2c;\frac{ca}{b}+\frac{ab}{c}\ge2a\)
\(\text{cộng vế theo vế ta được: }2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Leftrightarrow\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
\(\text{BĐT đc c/m}\)
Áp dụng BĐT Cô - si ta có : \(\hept{\begin{cases}\frac{ab}{c}+\frac{bc}{a}\ge\sqrt{\frac{ab^2c}{ac}}=2\sqrt{b^2}=2b\\\frac{bc}{a}+\frac{ca}{b}\ge\sqrt{\frac{abc^2}{ab}}=2\sqrt{c^2}=2c\\\frac{ab}{c}+\frac{ca}{b}\ge\sqrt{\frac{bca^2}{bc}}=2\sqrt{a^2}=2a\end{cases}}\)
Cộng vế theo vế ta được :
\(\frac{ab}{c}+\frac{bc}{a}+\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}+\frac{ca}{b}\ge2a+2b+2c\)
\(\Leftrightarrow2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)