bạn lấy vế lớn hơn trừ vế bé hơn bằng cách quy đồng lên rồi cộng lại với nhau rồi cộng 3 cái tích đó lại
bạn lấy vế lớn hơn trừ vế bé hơn bằng cách quy đồng lên rồi cộng lại với nhau rồi cộng 3 cái tích đó lại
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Cho a,b,c>0 chứng minh \(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Cho a,b,c>0 Chứng minh:
\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Cho a,b,c>0. Chứng minh:
\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Cho a, b ,c \(\ne\)0. Chứng minh rằng : \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Cho a,b,c > 0. Chứng minh rằng:\(\frac{a}{a^2+ab+b^2}+\frac{b}{b^2+bc+c^2}+\frac{c}{c^2+ca+a^2}\ge\frac{a+b+c}{a^2+b^2+c^2}\)
Bài 1: Chứng minh rằng: \(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
Bài 2: Cho a,b,c > 0. Chứng minh \(\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Cho a,b, c >0. Chứng minh rằng:\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{1}{2}.\left(a+b+c\right)\)