\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)
\(\ge3\sqrt[3]{\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Dễ có:\(\left(1+a\right)\left(1+b\right)\left(1+c\right)\le\left(\frac{3+a+b+c}{3}\right)^3\le8\)
Khi đó \(B\ge\frac{3}{2}\)
Đẳng thức xảy ra tại a=b=c=1