Theo Svac - xơ có :
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{9}{ab+bc+ca}\)
Khi đó \(P\ge\frac{9}{ab+bc+ca}+\frac{1}{a^2+b^2+c^2}\)
\(=\left(\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{1}{a^2+b^2+c^2}\right)+\frac{7}{ab+bc+ca}\)
\(\ge\frac{9}{a^2+b^2+c^2+2.\left(ab+bc+ca\right)}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}\)
\(=\frac{9}{\left(a+b+c\right)^2}+\frac{21}{\left(a+b+c\right)^2}=\frac{30}{\left(a+b+c\right)^2}=\frac{10}{3}\)
Dấu "=: xảy ra khi \(a=b=c=1\)
Vậy \(P_{min}=\frac{10}{3}\) khi \(a=b=c=1\)