Cho \(a,b,c>0\) thỏa mãn \(3\left(a^2+b^2+c^2\right)+ab+bc+ca=12\) Tìm Max:
\(P=\frac{a^2+b^2+c^2}{a+b+c}+ab+bc+ca\)
Cho \(a,b,c>0\) thỏa mãn \(abc=a+b+c+2\) Tìm Max:
\(Q=\frac{1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{b^2+1}}+\frac{1}{\sqrt{c^2+1}}\)
cho a,b,c>0: ab+bc+ca=1.tìm Max F\(\frac{1}{a^2+2}+\frac{1}{b^2+2}+\frac{1}{c^2+2}\)
Cho a+b+c=1 (a,b,c>0). Tìm Max P= \(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
cho a, b ,c >0 thỏa mãn 1/a+1/b+1/c=3. Tìm Max P=\(\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ca+a^2}}\)
Cho a,b,c > 0 thỏa mãn a + b + c = abc . Tìm
\(A_{max}=\frac{a}{\sqrt{bc\left(1+a^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Cho a , b , c > 0 . Chứng minh rằng :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}+\frac{7}{16}\cdot\frac{max\left\{\left(a-b\right)^2,\left(b-c\right)^2,\left(c-a\right)^2\right\}}{ab+bc+ca}\)
\(A=\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\)cho ab+bc+ca=abc và a,b,c>0 Tìm min
1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:
\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)
2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)
3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
4,Cho a,b,c>0.
Tìm GTLN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)
Cho a+b+c=2017 (a,b,c>0). Tìm Max A= \(\frac{ab}{\sqrt{2017c+ab}}+\frac{bc}{\sqrt{2017a+bc}}+\frac{ca}{\sqrt{2017b+ca}}\)