Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
1,chứng minh x2+y2 +z2\(\ge2xy+2yz-2X\)
2, Cho a,b,c >0 . Chứng minh \(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
3, cho a + b >1 . Chứng minh a4 + b4>\(\frac{1}{8}\)
Bài 1: a) Cho a+b+c=6 và ab+bc+ac=9. Chứng minh rằng 0<a<4; 0<b<4; 0<c<4.
b) Cho a+b+c=2 và a2+b2+c2=2. Chứng minh rằng: \(0\le a\le\frac{4}{3};\)\(0\le b\le\frac{4}{3};\)\(0\le c\le\frac{4}{3}.\)
cho \(a+b+c=0,a^2+b^2+c^2=1\)
chứng minh rằng \(a^4+b^4+c^4=\dfrac{1}{2}\)
Cho a+b+c=0 và \(a^2+b^2+c^2=1\)
Chứng minh \(a^4+b^4+c^4=\frac{1}{2}\)
Nhanh nhaaa
Cho \(a+b+c=0;\)\(a^2+b^2+c^2=1.\)
Chứng minh rằng \(a^4+b^4+c^4=\frac{1}{2}.\)
bài 1: chứng minh\(\frac{a}{b}+\frac{b}{2}\ge2\)với a>0, b>0
bài 2:chứng minh \(3a^2+\frac{b^2}{4}+\frac{c^2}{4}+\frac{d^2}{4}\ge a\left(b+c+d\right)\)
bài 3:chứng minh \(\frac{3a^2}{4}+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
Cho a+b+c=0.chứng minh rằng a^4+b^4+c^4=1/2(a^2+b^2+c^2)