cho a ,b ,c >0 và a +b+ c<=3 .tìm GTLN của a/1+a^2 +b/1+b^2 +c/c^2 +1
cho a,b,c>0 và a+b+c=3
tìm gtln của ab+bc+ca?
tìm gtnn của a/b2+1 + b/c2+1 + c/a2+1?
0≤a,b,c≤\(\sqrt{ }\)2 và a+b+c=\(\sqrt{ }\)5 Tìm GTLN của M=a^2+b^2+c^2
Tìm GTLN của a^2 + b^2 + c^2 biết a,b,c thỏa 0 <= a,b,c <=2 và a+b+c=3
1,Cho A=x/y+1 +y/x+1 bới x>0;y>0 và x+y=1
tìm GTNN,GTLN của A
2,Cho a+b+c=3 và a,b,c >0
Chứng minh \(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{3}{2}\)
Cho \(0\le a,b,c\le1;a+b+c=2\)Tìm GTLN của N = a^2 + b^2 + c62
Cho a,b,c thoả mãn 0<hoặc = a,b,c< hoặc =2 và a+b+c=3
Tìm GTLN của P =a2+b2+c2
Cho các số a, b, c > 0 và a + b + c = 21. Tìm GTLN của:
a, \(\sqrt{a+2}+\sqrt{b+2}+\sqrt{c+2}\le9\)
b, \(\sqrt{a+b+2}+\sqrt{b+c+2}+\sqrt{c+a+2}\le12\)
B1: Cho \(0\le a,b,c\le2\) thỏa mãn \(a+b+c=3\). CMR: \(a^2+b^2+c^2\le5\)
B2: Cho \(a,b\ge0\) thỏa mãn \(a^2+b^2=a+b\). TÌm GTLN \(S=\dfrac{a}{a+1}+\dfrac{b}{b+1}\)
B3: CMR: \(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\forall x\ne y,xy\ne0\)