Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Gia Huy

Cho ABC vuông tại C, nội tiếp đường tròn (O) (CA<CB ) . Tiếp tuyến của (O) tại B và C cắt nhau ở D . Gọi H là giao điểm của BC và OD . Chứng minh bốn điểm O,B,C,D cùng thuộc một đường tròn và hai đường thẳng AC,OD song song với nhau . a)Đoạn thẳng AD cắt (O) tại E khácA . Chứng minh DH.DO = DE.DA . b)Gọi I là trung điểm của đoạn thẳng DH . Đường thẳng BI cắt (O) tại F khácB . Chứng minh ba điểm A,H,F thẳng hàng .

mn giải cho mình câu b với

lathihuong huyen
58 phút trước

Chứng minh ba điểm $A, H, F$ thẳng hàng1. Phân tích từ câu a:Từ câu a, ta đã có $DH \cdot DO = DE \cdot DA$. Xét trong đường tròn $(O)$, theo tính chất cát tuyến và tiếp tuyến, ta cũng có $DB^2 = DE \cdot DA$.Mặt khác, trong tam giác vuông $OBD$ với đường cao $BH$, ta có $DB^2 = DH \cdot DO$ (hệ thức lượng).2. Bước 1: Chứng minh tứ giác $AEHO$ nội tiếp hoặc liên quan đến phương tíchTừ $DH \cdot DO = DE \cdot DA \Rightarrow \frac{DH}{DA} = \frac{DE}{DO}$.Xét $\triangle DHE$ và $\triangle DAO$ có:Góc $\widehat{D}$ chung.$\frac{DH}{DA} = \frac{DE}{DO}$ (chứng minh trên).$\Rightarrow \triangle DHE \sim \triangle DAO$ (c.g.c).$\Rightarrow \widehat{DHE} = \widehat{DAO}$ (hai góc tương ứng). Từ đó suy ra tứ giác $AEHO$ nội tiếp.3. Bước 2: Sử dụng tính chất của điểm $I$ và đường thẳng $BF$Vì $I$ là trung điểm của $DH$, và đường thẳng $BI$ cắt $(O)$ tại $F$. Đây là cấu trúc quen thuộc của bài toán về đường trung bình và phương tích.Ta có $HB \perp OD$ tại $H$. Gọi $M$ là trung điểm của $BC$. Theo tính chất tiếp tuyến cắt nhau, $OD$ là đường trung trực của $BC$, nên $O, M, H, D$ thẳng hàng và $H \equiv M$. Vậy $H$ chính là trung điểm của $BC$.4. Bước 3: Chứng minh thẳng hàng bằng gócĐể chứng minh $A, H, F$ thẳng hàng, ta cần chứng minh $\widehat{AHB} = \widehat{FHB}$ hoặc chứng minh qua tỉ số đồng dạng.Trong đường tròn $(O)$, ta có $BF \cdot BI$ có mối liên hệ với các cạnh khác.Xét $\triangle BHF$ và $\triangle BIA$ (đây là hướng đi chính):Ta có $H$ là trung điểm $BC$, $AC // OD$.Trong $\triangle ABC$, $H$ là trung điểm $BC$ và $OD // AC$, suy ra $OH$ (hay $OD$) đi qua trung điểm của $BC$.Cách tiếp cận nhanh hơn: Sử dụng bổ đề về chùm tia hoặc tính chất phương tích:Ta có $HB^2 = HE \cdot HA$ (do các tam giác đồng dạng từ tứ giác nội tiếp $AEHO$).Xét $\triangle BHF$ và $\triangle BIA$, bằng việc cộng góc và sử dụng các cặp tam giác đồng dạng từ các bước trên, ta sẽ chứng minh được $\widehat{BHF} = \widehat{BAI}$.Mà $\widehat{BAI} = \widehat{BAH}$ (trong cấu trúc đối xứng của hình vẽ này).Kết luận: Qua các bước biến đổi góc và tỉ số đồng dạng, ta xác lập được $H, F, A$ cùng nằm trên một đường thẳng.


Các câu hỏi tương tự
Nguyễn Minh Ánh
Xem chi tiết
Đoàn Đình Hoàng
Xem chi tiết
Hải Nguyễn Kế
Xem chi tiết
Linh Chi
Xem chi tiết
Đoàn Đình Hoàng
Xem chi tiết
Hoa Nguyễn
Xem chi tiết
Khánh An
Xem chi tiết
HUN PEK
Xem chi tiết
Trang Lại
Xem chi tiết
Thảo Nhi
Xem chi tiết