Cho ∆ABC vuông tại C, có BC =1/2AB. Trên cạnh BC lấy điểm E (E khác B và C). Từ B kẻ đường thẳng d vuông góc với AE, gọi giao điểm của d với AE, AC kéo dài lần lượt là I, K.
a. Gọi H là giao điểm của đường tròn đường kính AK với cạnh AB.
Chứng minh: H, E, K thẳng hàng.
b. Tìm quỹ tích điểm I khi E chạy trên BC.