Cho a,b,c nguyên dương tm a+b+c=1 tm\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{3}{2}\)
Cm a=b=c
cho a,b,c>0 tm abc=1. cmr \(\dfrac{1}{a^3\left(b+c\right)}\) + \(\dfrac{1}{b^3\left(c+a\right)}\) +\(\dfrac{1}{c^3\left(a+b\right)}\)≥\(\dfrac{3}{2}\)
Cho a,b,c nguyên dương TM: a+b+c=abc
CMR:a/(b^3)+b/(c^3)+c/(a^3)>=1
1) Cho a,b,c>0 tm a+b+c=3. Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
2) Cho a,b,c>0 tm \(a^2+b^2+c^2\le abc\).Cmr \(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{1}{2}\)
3) Cho a,b,c>0 tm \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\).Cmr \(\sqrt{\frac{ab}{a+b+2c}}+\sqrt{\frac{bc}{b+c+2a}}+\sqrt{\frac{ca}{c+a+2b}}\le\frac{1}{2}\)
Giúp mình mới nhé các bạn. Mình đang cần gấp
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)
Cho a,b,c là các số TM: a = b+c
\(\dfrac{a^3_{ }+b^3}{a^3+c^3}\) = \(\dfrac{a+b}{a+c}\)
cho a,b,c là các số dương tm abc=1. Tìm gtln của bt 1/(a^3+b^3+abc) + 1/(b^3+c^3+abc) + 1/(c^3+a^3+abc)
Cho a,b,c >3 tm a+b+c=3 Tìm \(P=\frac{a}{3+b-a}+\frac{b}{3+c-b}+\frac{c}{3+a-c}\)
1, Cho -2<= a,b,c<=3 và a+b+c=0 cm: a^2+b^2+c^2<=18
2, cho x,y,z>o tm x+y+z=1
tìm Min P=(1+1/x)(1+1/y)(1+1/z)