Do \(a\le1\Rightarrow a^2\le1\) và
\(\left(1-a^2\right)\left(1-b\right)\le0\Rightarrow1+a^2b^2\ge a^2+b\)
Mà \(0\le a,b\le1\Rightarrow a^2\ge a^3,b^2\ge b^3\)
\(\Rightarrow1+a^2b^2\ge a^3+b^3\)
Tương tự rồi cộng lại ta có được điều phải chứng minh
Do \(a\le1\Rightarrow a^2\le1\) và
\(\left(1-a^2\right)\left(1-b\right)\le0\Rightarrow1+a^2b^2\ge a^2+b\)
Mà \(0\le a,b\le1\Rightarrow a^2\ge a^3,b^2\ge b^3\)
\(\Rightarrow1+a^2b^2\ge a^3+b^3\)
Tương tự rồi cộng lại ta có được điều phải chứng minh
cho a,b là các số thực thỏa mãn a\(\ge\)b.Chứng minh rằng a3-b3\(\ge\)ab2-a2b
a3+b3+c3 ≥ a+b+c, với a, b, c > 0 và abc = 1
Cho các số thực a,b,c thuộc đoạn [0;1]. Tìm Max
\(P=\dfrac{a}{b+c+1}+\dfrac{b}{a+c+1}+\dfrac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
Cho a,b,c thuộc R. Chứng minh: \(a^2+b^2+c^2\ge ab-bc-ac\)
a3 + b3 ≥ 0,25
cho a >0 b>0 c>0 chúng minh :
\(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a3}\ge\dfrac{a^3}{b}+\dfrac{b^5}{c}+\dfrac{c^3}{a}\)
giúp mik với cần gấp
cho a,b,c ∈ [0;1]. Cmr:
\(a^2+b^2+c^2\le1+a^2b\sqrt{b}+b^2c\sqrt{c}+c^2a\sqrt{a}\)
cho a, b, c \(\in\left(0;1\right)\). Chứng minh rằng có ít nhất 1 trong các bất đẳng thức sau đây là sai :
\(a\left(1-b\right)>\frac{1}{4}\)
\(b\left(1-c\right)>\frac{1}{4}\)
\(c\left(1-a\right)>\frac{1}{4}\)
Cho a,b > 0. Chứng minh:
\(a^3+\dfrac{b^3}{a^3}+\dfrac{1}{b^3}\ge a+\dfrac{b}{a}+\dfrac{1}{b}\)
Sử dụng các BĐT quen thuộc