Cho a,b,c,d là các số nguyên thoả mãn a3+b3=2.(c3-8d3). Chứng minh rằng: a+b+c+d chia hết cho 3
Bài 1:Cho các số thực a,b,c thỏa mãn a^3 - b^2 - b = b^3 - c^2 - c = c^3 - a^2 - a =1/3. Chứng minh rằng a=b=c
Bài 2:Cho các số nguyên a1,a2,a3,...,an có tổng chia hết cho 3. Chứng minh P= a1^3 + a2^3 + a3^3 + ... +an^3 chia hết cho 3
cho a,b,c thỏa mãn 2a+b,2b+c,2c+a là số chính phương.biết một trong ba số chính phương ấy chia hết cho 3 chứng minh rằng (a-b)^3+(b-c)^3+(c-a)^3 chia hết cho 81
cho a,b,c,d thuộc Z thỏa mãn a^3+b^3=2(c^3-8d^3). chứng minh rằng a+b+c+d chia hết cho 3
Cho a và b là hai số tự nhiên thoả mãn (a+ 3) và (b +4) cùng chia hết cho 5. Chứng minh a^2+ b^2cũng chia hết cho 5.
Cho các số nguyên a,b,c thỏa mãn a^3+b^3+c^3=2007. Chứng minh a.b.c chia hết cho 3
cho a,b,c là 3 số dương thoả mãn abc=1 chứng minh rằng 1/a^3(b+c)+1/b^3(a+c)+1/c^3(a+b)>=3/2
cho a, b, c là ba số dương thoả mãn abc=1. chứng minh rằng 1/a^3(b+c) +1/b^3(c+a) + 1/c^3(a+b)
Cho a, b, c là các số nguyên thỏa mãn a+7b+2024c = c3 . Chứng minh rằng a^3+b^3+c^3 chia hết cho 6.