Cho a,b,c>0 thỏa mãn a+2b+3c=1
CMR: \(\frac{2ab}{a^2+4b^2}+\frac{6bc}{4b^2+9c^2}+\frac{3ac}{9c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}\right)\ge\frac{15}{4}\)
Chứng minh rằng:\(\frac{a}{1+a^2}+\frac{b}{1+4b^2}+\frac{c}{1+9c^2}=\frac{abc\left(5a+16b+27c\right)}{\left(a+2b\right)\left(a+3c\right)\left(2b+3c\right)}\)
biết các số a, b, c thỏa mãn \(\frac{1}{bc}+\frac{2}{ac}+\frac{3}{ab}=6\)và các biểu thức có nghĩa
cho a,b,c>0. CMR
\(\frac{2ab}{3a+8b+6c}+\frac{3bc}{3b+6c+4}+\frac{3ac}{9c+4a+4b}\le\frac{a+2b+3c}{2}\)
Cho a,b,c >0 và a+2b+3c=18
Chứng minh \(\frac{2b+3c+5}{1+a}+\frac{3c+a+5}{1+2b}+\frac{a+2b+5}{1+3c}\ge\frac{51}{7}\)
a) Cho a,b,c>0. chứng minh rằng:\(\frac{a}{3a^2+2b^2+c^2}+\frac{b}{3b^2+2c^2+a^2}+\frac{c}{3c^2+2a^2+b^2}\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a,b,c>0 CMR:\(\frac{a}{3a^2+2b^2+c^2}+\frac{b}{3b^2+2c^2+a^2}+\frac{c}{3c^2+2a^2+b^2}\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a,b,c >0. Tìm min:
\(N=\frac{a+3c}{a+2b+c}+\frac{4b}{a+b+2c}-\frac{8c}{a+b+3c}\)
cho a,b,c >0
CMR:\(\frac{a}{3a^2+2b^2+c^2}+\frac{b}{3b^2+2c^2+a^2}+\frac{c}{3c^2+2a^2+b^2}\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\frac{a}{3a^2+2b^2+c^2}+\frac{b}{3b^2+2c^2+a^2}+\frac{c}{3c^2+2a^2+b^2}\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)