Cho a,b,c > 0 và a+b+c =1. Chứng minh ab/(c+ab) + bc/(a+bc) + ca/(b+ca) > hoặc = 3/4
Cho a,b>=0,a+b+c=1/abc.Tìm minA=(a+b)(a+c)
cho abc(ab+bc+ca)khác 0. Tính A=(x-b-c)/a+(x-c-a)/b+(x-a-b)/c=3cho abc(ab+bc+ca)khác 0. Tính A=(x-b-c)/a+(x-c-a)/b+(x-a-b)/c=3
Cho (a+b+c)^2 = 3(ab+bc+ca). CMR: a=b=c
Cho a^3+b^3+c^3 = 3abc. CMR: a=b=c và a+b+c=0
Cho a+b+c=0. CMR: a^3+b^3+c^3 = 3abc
Cho P=(a+b+c)(ab+bc+ca)+abc
a)Phân tích P thành nhân tử
b)Cmr:Nếu a,b,c là các số nguyên mà a+b+c chia hết cho 6 thì P- 4abc cũng chia hết cho 6
Cho a+b+c=0 và ab+bc+ca=0. Chứng minh: a=b=c
cho a,b,c >0 thoa man a+b+c=3.chung minh (a^2+bc)/(b+ca) + (b^2+ca)/(c+ab) + (c^2+ab)/(a+bc) ≥ 3
cho a,b,c>0 và 1/ab+1/bc+1/ca>=1. cmr: a/bc+b/ca+c/ab>=1
Cho a,b,c>0. Chứng minh: \(a^2+b^2+c^2\ge3\left(ab+bc+ca\right)\) và \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\ge\frac{10}{3}\)