Cho ∆ABC vuông tại A, AB < AC. Vẽ AD vuông góc với BC (D thuộc BC). Trên tia đối của tia DA lấy điểm E sao cho AD = DE.
a)Chứng minh ∆ACD = ∆ECD
b) Chứng minh AB = BE
c) Trên đoạn DC lấy điểm F sao cho BD = DF. Chứng minh EF ⊥ AC
d) Gọi I là giao điểm của EF và AC. Trên CE lấy điểm K sao cho CK = CI. Chứng minh ba điểm A, F, K thẳng hàng
Cho ∆ABC vuông tại A, AB < AC. Vẽ AD vuông góc với BC (D thuộc BC). Trên tia đối của tia DA lấy điểm E sao cho AD = DE.
a)Chứng minh ∆ACD = ∆ECD
b) Chứng minh AB = BE
c) Trên đoạn DC lấy điểm F sao cho BD = DF. Chứng minh EF ⊥ AC
d) Gọi I là giao điểm của EF và AC. Trên CE lấy điểm K sao cho CK = CI. Chứng minh ba điểm A, F, K thẳng hàng
Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm
a. Tính độ dài BC
b. So sánh các góc của tam giác ABC
c. Vẽ đường phân giác BD của tam giác ABC (D thuộc AC). Vẽ DB vuông góc với BC tại E. Chứng minh tam giác ABD = tam giác EBD
d. Trên tia đối của tia AB, lấy điểm K sao cho AK = EC
Chứng minh góc BKC bằng góc BCK
e. Tia BD cắt KC tại I. Chứng minh IA = IE.
Cho tam giác ABC vuông tại A. Trên tia đối tia AB lấy điểm D sao cho AD = AB.
a/ Cho biết AB = 6cm và BC = 10cm. Tính AC và so sánh góc B và góc C.
b/ Chứng minh tam giác CBD cân.
c/ Gọi M là trung điểm CD. Qua D vẽ đường thẳng song song BC cắt tia BM tại K. Chứng minh BC = DK và BC + BD > BK.
d/ AK cắt DM tại E. Chứng minh BC = 3DE
1) Cho góc nhọn xOy, trên tia Ox lấy hai điểm A và B ( A nằm giữa O và B ), trên tia Oy lấy C và D ( C nằm giữa O và D ) sao cho OA = OC, OB =BC
a, Chứng minh AD = BC
b, AD cắt BC tại I, Chứng minh AI = IC và IB - ID
c, Chứng minh OI là tia phân giác của góc xOy
2) Cho tam giác nhọn ABC. Trên nữa mặt phẳng bờ AC không chứa B, vẽ tia Ax vuông góc với AC. Trên nưa mặt phẳng bờ AB không chưa C, vẽ tia Ay vuông góc với AB. Trên tia Ax lấy D sao cho AD = AC. Trên Ay lấy E sao cho AE = AB
a, Chứng minh: BD = EC
b, Chứng minh BD vuông góc với EC
c, Kẻ AH vuông góc với BC tại H. Tia đối của AH cắt ED tại M, Chứng minh ME=MD
Bài 1 : Cho tam giác ABC vuông góc tại A tia phân giacd B cắt AC tại D . Trên BC lấy điểm E sao cho : BE =BA
a) Vẽ hình viết giả thiết kết luận b)chứng minh DA=DE
b)trên tia dôid của tia AB lấy K sao cho AK =EC,Chứng minh DK=DC
Cho tam giác ABC vuông tại A có AB=3cm, AC=4cm
a) Tính độ dài BC
b) Vẽ đường phân giác BD của tam giác ABC (D thuộc AC). Vẽ DE vuông BC tại E. Chứng minh: tam giác ABD= tam giác EBD
c) Trên tia đối của tia AB lấy điểm K sao cho AK=EC. Chứng minh: góc BKC= góc BCK
d) Tia BD cắt KC tại I. Chứng minh: IA=IE
\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b) ABC = KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có B = C , kẻ AH BC, H BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK AD, CI AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)
Cho tam giác ABC nhọn . Trên tia đối của tia AB lấy điểm D sao cho AD=AB. Trên tia đối của AC lấy điểm E sao cho AE=AC.
1) So sánh BC và DE.
2) AH và AK lần lượt là đường cao của tam giác ABC và ADE. Chứng minh H, A, K thẳng hàng