cho tam giác abc vuông tại a đường cao ah chia cạnh huyền BC thành hai đoạn thắng BH và BC có độ dài lần lượt là 4cm và 9cm. Gọi D,E lần lượt là hình chiếu của H trên Ab, AC.
a) Tính De
b) Tính góc B, C
c) Cm: AD.AB = AE . AC
d) Gọi M là trung điểm của BC. Cm Am vuông góc DE
cho tam giác ABC vuông ở A, đường cao AH chia cạnh BC thành 2 đoạn là BH và HC có đọ dài lần lượt là 4 va 9cm. Gọi D và E lần lượt là hình chiếu của H trên AB, AC
a, cm AD.AB=AE.AC
b, Gọi M là trung điểm của AC. Kẻ AK vuông góc với BM( Kthuộc BM)
CM \(\frac{1}{AK^2}=\frac{1}{AH^2}+\frac{3}{AC^2}\)
cho tam giác abc (ab<ac) nội tiếp đường tròn (o) có 2 đường cao bd và ce cắt nhau tại h gọi f và k lần lượt là giao điểm của ah với bc và de CM bk vuông góc ci
Cho tam giác `ABC` vuông tại A, đường cao `AH`, đường trung tuyến `AO`. Gọi `D,E` lần lượt là hình chiếu của `H` trên `AB,AC`. Qua `A` kẻ đường thẳng vuông góc với `AO` cắt `BC` ở `K`.
Chứng minh : `(BK)/(BH) = (CK)/(CH)`
Cho tam giác ABC (AB nhỏ hơn AC) có 3 góc nhọn ,đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD, tia AH cắt cạnh BC tại F. Gọi I là trung điểm AH . Qua I kẻ đường thẳng vuông góc với AO cắt đường thẳng DE tại M. CM: AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE
Cho tam giác ABC vuông tại âkẻ đường cao AH sao cho BH = 9 cm CH= 16 cm a tính độ dài AH AB và CD Gọi D và E lần lượt là hình chiếu vuông góc của H Trên cạnh AB và AC cắt BD tại I Chứng minh rằng góc ADE = góc ACB .c)gọi O là trung điểm của BC , AOcắt DE tại k Chứng minh rằng AH mũ 2 =AK.BC
cho tam giác ABC vuống tại A dường có AH. biết AC=12cm BC=15cm a tính HA,HB,HC b gọi E.F là hình chiếu vuống góc của H lần lượt lên AB,AC .
a tính HA,HB,HC
b gọi E.F là hình chiếu vuống góc của H lầ lượt lên AB,AC .CM AE.AB=AF.AC
c CM \(HE^2+HF^2=HB.HC\)
Bài 2 cho hình vuông ABCD. I là một điểm thuộc BC. AI cắt CD tại M. kẻ DH và BK cùng vuông với AI
a CM AH=BK
b CM HD.AI luôn không đổi khi I di động trên cạnh BC
Cho 📐ABC có 3 góc nhọn. (O) tâm o đường kính BC cắt AB,AC lần lượt tại E,D. Gọi H là giao điểm của BD và CE.
a) CM: ^BDC = ^BEC , AH Vuông góc BC.
b) Xác định tâm I của đường tròn qua 4 điểm A,D,H,E.
c) CM: ID là tiếp tuyến của dường tròn.
d) CM : BH.BD+CH.CE=BC^2
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. a) Biết AB = 2cm, AC =2/3 m. Tính độ dài BC, AH và số đo góc B. b) Gọi E là trung điểm AC của tam giác ABC và K là hình chiếu vuông góc của A lên BE. Chứng minh BK BE = BH BC và tam giác KEC đồng dạng với tam giác CEB c) Giả thiết rằng tia CK đồng thời là phân giác của góc C của tam giác ABC. Chứng minh 2.cos B = taB