\(\frac{b+c}{bc}=\frac{2}{a}\)
\(2bc=a\left(b+c\right)\)
\(bc+bc=ab+ac\)
\(bc-ab=ac-bc\)
\(b\left(c-a\right)=c\left(a-b\right)\)
\(\Rightarrow\frac{b}{c}=\frac{a-b}{c-a}\) ( đpcm )
cho a,b,c đôi một khác nhau thỏa mãn : (a+b+c)^2=a^2+b^2+c^2.
rút gọn P=a^2/a^2+2bc +b^2/b^2+2ac + c^2/c^2+2ab
cho c^2+2ab-2ac-2bc=0
tính P=(a^2+(a-c)^2)/(b^2+(b-c)^2)
cho a+b+c=0 và khác 0
rút gọn: A=a^2/a^2-b^2-c^2 +b^2/b^2-c^2-a^2 +c^2/c^2-a^2-b^2