Sử dụng bất đẳng thức quen thuộc \(\left(x+y\right)^2\ge4xy\leftrightarrow\left(x-y\right)^2\ge0\) ta có ngay \(1=\left(a+b+c\right)^2\ge4\left(a+b\right)c\). Tiếp tục sử dụng bất đẳng thức trên một lần nữa ta được
\(a+b=\left(a+b\right)\cdot1\ge\left(a+b\right)\cdot4\left(a+b\right)c=4\left(a+b\right)^2c\ge16abc.\) (ĐPCM)