Tính chất tỉ số:
Cho x, y, z > 0; x/y < 1 ta có: x / y < (x+z) / (y+z) (*)
cm:
(*) <=> x(y+z) < y(x+z) <=> xy+xz < yx+yz <=> xz < yz <=> x < y đúng do gt x < y
- - - - -
với các số dương a, b, c ta có: a < a+b ; b < b+c ; c < c+a
=> a/(a+b) < 1 ; b/(b+c) < 1 ; c/(c+a) < 1; ad (*) ta có:
A = a/(a+b) + b/(b+c) + c/(c+a) < (a+c)/(a+b+c) + (b+a)/(b+c+a) + (c+b)/(c+a+b)
=> A < 2(a+b+c)/(a+b+c) = 2
mặt khác ta có:
A = a/(a+b) + b/(b+c) + c/(c+a) > a/(a+b+c) + b/(b+c+a) + c/(c+a+b)
=> A > (a+b+c)/(a+b+c) = 1
Tóm lại ta có: 1 < A < 2 => A không là số nguyên
Ta thấy :
a/(a + b) > a/(a + b + c)
b/(b + c) > b/ (a + b + c)
c/(c + a) > c / (a + b + c)
Cộng vế với vế ta được :
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\) (1)
Lại thấy :
a/(a + b) < (a + c)/(a + b + c)
b/(b + c) < (b + a)/(a + b + c)
c/(c + a) < (c + b)/(a + b + c)
Cộng vế với vế lại được :
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}
Chứng mình nhỏ hơn 2 :
a/a+b + b/b+c +c/c+a = a+b-b/a+b + b+c-c/b+c + c+a-a/c+a = 1 - b/a+b + 1 - c/b+c + 1 - a/a+c
= (1+1+1) - (b/a+b + c/b+c + a/a+c)
= 3 - (b/a+b + c/b+c + a/a+c)
Mà b/a+b + c/c+b + a/c+a > 1 ( Chứng minh tương tự như trên ) => 3 - (b/a+b + c/c+b + a/a+c) < 2
=> Số đó nhỏ hơn 2
+ a/(a + b) > a/(a + b + c)
b/(b + c) > b/ (a + b + c)
c/ (a + c) > c / (a + b + c)
=> a/(a+b)+b/(b+c)+c/(c+a) > (a + b + c) / (a + b + c) = 1
+ ta có
a/(a + b) < (a + c)/ (a + b + c) '
thật vậy nhân lên ta có
a^2 + ab + ac < a^2 + ab + ac + bc
<> 0 < bc đúng
- tương tự b/(b + c) < (b + a) / (a + b + c) '' và c/ (a + c) < (c + b) / (a + b + c) '''
cộng ','',''' => đpcm
+ a/(a + b) > a/(a + b + c)
b/(b + c) > b/ (a + b + c)
c/ (a + c) > c / (a + b + c)
=> a/(a+b)+b/(b+c)+c/(c+a) > (a + b + c) / (a + b + c) = 1
+ ta có
a/(a + b) < (a + c)/ (a + b + c) '
thật vậy nhân lên ta có
a^2 + ab + ac < a^2 + ab + ac + bc
<> 0 < bc đúng
- tương tự b/(b + c) < (b + a) / (a + b + c) '' và c/ (a + c) < (c + b) / (a + b + c) '''
cộng ','',''' => đpcm
Vay nhe
Các bạn đều thiếu chứng minh bài toán phụ nha năm trc mình đi thi hsg lớp 6 nhiều ng ko chứng minh bài toán phụ nên ko có giải cao.
Bìa này các bạn làm như bạn Đinh Tuấn Việt rồi Thêm như sau:
CM bài toán phụ:
Cho a/b<1. CM:a/b<a+c/b+c
Ta có a/b<1
=>a<b
=>a.c<b.c
=>a.(b+c)<b.(c+a)
=>a/b<a+c/b+c
vậy bài toaans đã đc chứng minh
k mình nha mình đã mất công làm rồi
ê ê ê có ai chơi free fire ko