Đặt A=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\)
Áp dụng BĐT bunhiacopxki dạng phân thức ta có:
A\(\ge\)\(\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\ge\frac{3\left(ab+bc+ac\right)}{2\left(ab+bc+ac\right)}=\frac{3}{2}\Rightarrowđpcm\)
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)