Bài toán này chỉ chứng minh được với điều kiện đó là tam giác vuông với 2 cạnh của góc vuông là a & b.
Lúc đó ta sẽ có:
a^2 + b^2 = c^2
Suy ra:
a^2 + b^2 - c^2 = 0 (1)
Đề bài là:
M = 4a^2b^2 – ( a^2+ b^2 – c^2)
Thay (1) vào:
M = 4a^2b^2 - 0
M = 4a^2b^2
M > 0 (hay M luôn dương).
Ta có \(a^2-b^2-c^2-2bc\)
\(=a^2-\left(b^2+2bc+c^2\right)\)
\(=a^2-\left(b+c\right)^2\)
Ta có \(a^2\ge0;\left(b+c\right)^2\ge0\)nên \(a^2-\left(b+c\right)^2\ge0\)
Khi đó hiệu trên luôn dương
Vậy....
Ta có a − b − c − 2bc = a − b + 2bc + c = a − b + c
Ta có a ≥ 0; b + c ≥ 0
nên a − b + c ≥ 0
Khi đó hiệu trên luôn dương
\(a^2-b^2-c^2-2bc=a^2-\left(b-c\right)^2=\left(a-b+c\right)\left(a+b-c\right)\)
Vì a,b,c là đồ dài 3 cạnh của t/g nên:
a+c>b => a+c-b > 0
a+b>c => a+b-c > 0
Do đó: \(\left(a-b+c\right)\left(a+b-c\right)>0\)
Vậy...