Cho a, b, c là độ dài 3 cạnh tam giác. CMR:\(a^2b+b^2c+c^2a+a^2c+c^2b+b^2a-a^3-b^3-c^3>0\)
CMR nếu a, b,c là độ dài 3 cạnh của một tam giác thì:
a) 4a^2 -(a^2+ b^2 +c^2) >0
b)2a^2b^2 + 2b^2c^2 +2a^2c^2 - a^4 -b^4 - c^4>0
Cho a,b,c là độ dài ba cạnh của một tam giác có chu vi là 3:
CMR: \(\sqrt{\frac{ab}{a+b-c}}+\sqrt{\frac{bc}{b+c-a}}+\sqrt{\frac{ca}{c+a-b}}\ge3\)
1. Cho a,b,c là độ dài 3 cạnh của 1 tam giác vuông, cạnh huyền là a. Cmr: a3 > b3 + c3
2. Cho a,b,c > 0 và a+b+c=4. CMR: ab/a+b+2c + bc/2a+b+c + ac/a+2b+c <= 1
1. Cho a,b,c là độ dài 3 cạnh của 1 tam giác vuông, cạnh huyền là a. Cmr:
a3 > b3 + c3
2. Cho a,b,c > 0 và a+b+c=4. CMR
ab/a+b+2c + bc/2a+b+c + ac/a+2b+c <= 1
Cho a, b,c là độ dài 3 cạnh của một tam giác. Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}+\dfrac{b}{\sqrt{2a^2+2c^2-b^2}}+\dfrac{c}{\sqrt{2b^2+2a^2-c^2}}\).
Cho a ; b; c là độ dài ba cạnh của 1 tam giác . P là nửa chu vi của tam giác đó . CMR :
( p - a )( p - b )( p - c ) <= 1/8abc
cho a,b,c là chiều dài ba cạnh của 1 tam giác có chu vi bằng hai CMR a^2+b^2+c^2+2abc<2
Cho a,b,c là độ dài 3 cạnh của tam giác thỏa mãn:
\(a^2+b^2+c^2=\frac{1}{9}\)
CMR \(S=\left(2b\:+2c\:-a\right)^3+\left(2c\:+2a-b\right)^3\:+\left(2a\:+2b\:-c\right)^3\ge\frac{1}{\sqrt{3}}\)