Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng:
\(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\)
Cho a, b, c là số đo 3 cạnh của một tam giác. Chứng minh rằng: \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Cho a, b, c là 3 cạnh của một tam giác. chứng minh rằng;
\(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Cho a,b,c là 3 cạnh của một tam giác .Chứng minh:
\(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Cho a,b,c là độ dài ba cạnh của một tam giác. CMR:\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Cho a,b,c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng: \(2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\ge\frac{a}{c}+\frac{b}{a}+\frac{c}{b}+3\)
Cho a,b,c là độ dài ba cạnh của một hình tam giác. Chứng minh rằng :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}< 2\)
Cho độ dài 3 cạnh của một tam giác
Chứng minh rằng :\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho a,b,c là dộ dài ba cạnh của một tam giác
Chứng minh :\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
MÌNH TICK CHO BẠN NÀO LÀM ĐÚNG NHA