Ta có: a2 + b2 + c2 + 2bc = a2 + (b + c)2 > 0
(a2 > 0, với a là cạnh cảu tam giác, (b + c)2 > 0, với b và c là cá cạnh tam giác)
Ta có: a2 + b2 + c2 + 2bc = a2 + (b + c)2 > 0
(a2 > 0, với a là cạnh cảu tam giác, (b + c)2 > 0, với b và c là cá cạnh tam giác)
Cho tam giac ABC , D la 1 diem tren canh BC . Goi E va F la diem doi xung cua D qua AB va AC. Cm
a) AE=AF
b) tu giac ABCD co them dieu kien gi thi E va F doi xung voi nhau qua A
a·(b+c)·(b2−c2)+b·(a+c)·(c2−b2)+c·(a+b)·(a2−b2)
Bài 1:Phân tích đa thức thành nhân tử
a) 2x4+3x3-9x2-3x2+2
b) a·(b+c)·(b2−c2)+b·(a+c)·(c2−b2)+c·(a+b)·(a2−b2)
Bài 2: Cho x-y=12. Tính A=x3-y3-36xy
Phân tích thành nhân tử :
a. (a + b)(a2 - b2) + (b - c)(b2 - c2) + (c + a)(c2 - a2)
b. a3 (b - c) + b3(c - a) + c3 (a - b)
c. a3 (c - b2) + b3 (a -c3) + c3 (b - a2) + abc(abc - 1)
d.a ( b + c )2 ( b - c ) + b ( c + a )2 (c - a ) + c ( a + b )2 (a - b )
e. a ( b + c )3 + b ( c - a )3 + c ( a - b )3
f. a2 b2 ( a - b ) + b2 c2 ( b - c ) + c2 a2( c - a )
g. a ( b2 + c2) + b ( c2 + a2 ) + c ( a2 + b2) - 2abc - a3 - b3 - c3
h. a4 ( b - c ) + b4 ( c - a ) + c4 ( a - b )
CMR a=b=c nếu có 1 trong các điều kiện sau:
1)(a+b+c)2=3(a2+b2+c2)
2) (a+b+c)2=3(ab+ac+bc)
Phân tích đa thức sau thành nhân tử:
a(b2+c2+bc) + b(c2+a2+ac)
Mời các cao nhân chỉ giáo!!!!
B1 cho a+b+c=0. Cm
A^3 + b^3+ a^2b+ b^2c -abc=0
B2. Tìm nghiệm
X+xy+y+2=0
X+y=xy
X^2+21= y^2
Phân tích các đa thức sau thành nhân tử:
a)4x
4 + 4x3 − x2 − x
b)1− 2a + 2bc + a 2 − b2 − c2
c)(x − 7)(x − 5)(x − 4)(x − 2) − 72
Câu 2. Tìm x, biết(x+5)(4-3x)-(3x+2)2+(2x+1)3=(2x-1)(4x2+2x+1)
Câu 3.
a) Cho a, b, c là các số nguyên thỏa mãn a + b + c = 2020 . Chứng minh rằng:
P = (ab + c – 2019)(bc + a – 2019)(ca + b – 2019) là số chính phương.
b) Cho x, y, z là các số tự nhiên thỏa mãn (xy + yz + zx)(x + y + z) = xyz + 2.
Tính giá trị của P = x2019 + y2019 + z2019.
Câu 4.
a) Tìm giá trị nhỏ nhất của biểu thức + 2020
b) Cho ba số nguyên a, b, c có tổng chia hết cho 6. Chứng minh rằng
M = (a + b)(b + c)(c + a) – 2abc , chia hết cho 6.
c) Tìm tất cả các số nguyên dương và số nguyên tố thỏa mãn .
cho a,b,c la 3 so thuc thoa man dk: a^2=(b-c)^2+2 va a^2= (b+c)^2-6.
tinh gia tri cua bieu thuc A=4a^2b^2-(a^2+b^2-c^2)^2