cho a,b,c là độ dài 3 cạnh tam giác .
1.CMR : abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )
2. \(\frac{1}{a+b},\frac{1}{b+c},\frac{1}{c+a}\) cũng là độ dài 3 cạnh của 1 tam giác.
Cho a,b,c là độ dài 3 cạnh của 1 tam giác sao cho :
\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(CMR:\)\(\frac{1}{b+c-a}+\frac{1}{c+a-b}+\frac{1}{a+b-c}\le\frac{3}{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}\)
a, b, c>0 tm \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)< 10\). CMR a,b,c là độ dài 3 cạnh tam giác
cho a, b, c>0. CMR a\(\frac{a^3}{b}\ge a^2+ab-b^2\)
CM \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Cho a, b, c là độ dài 3 cạnh của tam giác CM \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho a,b,c là độ dài ba cạnh của một tam giác và p là nửa chu vi của tam giác. CMR: \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\). Dấu "=" xảy ra khi nào?
Cho a,b,c là 3 cạnh của 1 tam giác, x,y,z là độ dài các phân giác trong của các góc đối diện với các cạnh đó. cmr: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho a,b,c là độ dài 3 cạnh tam giác.
CMR : \(2.\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}+3\)
Cho a,b,c là độ dài 3 cạnh tam giác. CMR:
\(\frac{ab}{a+b-c}+\frac{bc}{b+c-a}+\frac{ca}{c+a-b}\ge a+b+c\\ \)
Cho a,b,c là độ dài các cạnh của một tam giác và x,y,z lấn lượt là độ dài các đường phân giác của tam giác đó:
CMR: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)