Cho a, b, c là các số thực thỏa mãn a ≥ 3 và abc = 1. Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{2}{3}\).a2 + b2 + c2 - (ab + bc + ca).
cho a,b, thỏa mãn điều kiện a2 b2 c2 1 chứng minh abc 2 1 a b c ab bc ac ≥0
Cho các số thực dương a,b,c thỏa mãn a+b+c=3
Chứng minh rằng abc(1+a2)(1+b2)(1+c2)≤8
cho các số dương a b c khác 1 thỏa mãn abc<1 cmr a2 + b2 +c2 -2(ab+bc+ca) > -3
Câu 1. Phân tích đa thức thành nhân tử
a) x 2 + 4xy + 3y2
b) x 3 – y 3 + z3 + 3xyz
c) x 4 + 2x2 – x + 2
Câu 2. Chứng minh rằng a = b = c nếu có một trong các điều kiện sau:
a) a 2 + b2 + c2 = ab + bc + ca
b) (a + b + c)2 = 3(a2 + b2 + c2 )
c) (a + b + c)2 = 3(ab + bc + ca)
Câu 3. Chứng minh rằng với số tự nhiên n thì A = n(n+1)(n+2)(n+3) + 1 là số chính phương.
Câu 4. Tìm x thỏa mãn a) (x – 1)3 + (x – 3)3 = (2x – 4)3 b) (2x – 1)3 + (x + 3)3 = (3x + 2)3 c) (2x + 1)3 + (3x + 3)3 + (-5x - 4)3 = 0
cho a,b,c là các số thực thỏa mãn : ab+bc+ca = abc
và a+b+c =1.chứng minh rằng : (a-1).(b-1).(c-1)=0
các bạn giúp mình nhanh với
Bài 5:
Cho a,b,c,da,b,c,d là các số thực thỏa mãn {a+b+c+d=0a2+b2+c2+d2=2{a+b+c+d=0a2+b2+c2+d2=2
Tìm GTLN của P=abcd.
Bài 6:
Cho a,b,c≥0a,b,c≥0 thỏa mãn a+b+c=1.a+b+c=1. Tìm giá trị lớn nhất của biểu thức:P=abc(a2+b2+c2)
cho a,b,c không đồng thời bằng 0 thỏa mãn a2+b2+c2=2,ab+bc+ca =1.tìm min,max của a,b,c
Cho a, b, c, d thỏa mãn a + b + c + d = 0; ab + ac + bc = 1. Rút gọn biểu thức P = 3(ab − cd)(bc − ad)(ca − bd) (a 2 + 1)(b 2 + 1)(c 2 + 1) ?
A. -1
B. 1
C. 3
D. -3