Đặt \(x=a^2;y=b^2;z=c^2\)
bđt \(\Leftrightarrow\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)
Áp dụng bđt Bunhiacopxki ta có:
\(\left(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\right)^2\)\(=\left(\sqrt{\frac{x\left(x+z\right)}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{y\left(y+x\right)}{\left(y+z\right)\left(y+x\right)}}+\sqrt{\frac{z\left(z+y\right)}{\left(z+x\right)\left(z+y\right)}}\right)^2\)
\(\le2\left(x+y+z\right)\left(\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+x\right)\left(z+y\right)}\right)\)
\(=\frac{4\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (*)
Ta cần CM: (*) \(\le\frac{9}{2}\)
Hay \(8\left(x+y+z\right)\left(xy+yz+zx\right)\le9\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
hay \(8xyz\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (luôn đúng)
=> đpcm
Đẳng thức xảy ra <=> a=b=c