Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ko ko ko

Cho a,b,c là các số thực dương thỏa mãn abc=1. Tìm giá trị lớn nhất của biểu thức P=1/(a+2b+3)+1/(b+2c+3)+1/(c+2a+3)

 

Yen Nhi
15 tháng 1 2022 lúc 20:42

Answer:

Có \(a+2b+3\)

\(=\left(a+b\right)+\left(b+1\right)+2\ge2\sqrt{ab}+2\sqrt{b}+2\)

\(\Rightarrow\frac{1}{a+2b+3}\le\frac{1}{2\left(\sqrt{ab}+\sqrt{b}+1\right)}\)

\(\Leftrightarrow\frac{1}{b+2c+3}\le\frac{1}{2\left(\sqrt{bc}+\sqrt{c}+1\right)}\)\(;\frac{1}{c+2c+3}\le\frac{1}{2\left(\sqrt{ac}+\sqrt{a}+1\right)}\)

\(\Rightarrow P\le\frac{1}{2}[\frac{1}{\sqrt{ab}+\sqrt{b}+1}+\frac{1}{\sqrt{bc}+\sqrt{c}+1}+\frac{1}{\sqrt{ac}+\sqrt{a}+1}]\)

Bởi vì abc = 1 nên \(\sqrt{abc}=1\)

\(\Rightarrow P\le\frac{1}{2}[\frac{\sqrt{c}}{1+\sqrt{bc}+\sqrt{c}}+\frac{1}{\sqrt{bc}+\sqrt{c}+1}+\frac{\sqrt{bc}}{\sqrt{bc}+\sqrt{c}+1}]\)

\(\Rightarrow P\le\frac{1\sqrt{bc}+\sqrt{c}+1}{2\sqrt{bc}+\sqrt{c}+1}\)

\(\Rightarrow P\le\frac{1}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=1\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyen Phuc Duy
Xem chi tiết
Ngọc Ngô
Xem chi tiết
Nguyễn Dương Thành Đạt
Xem chi tiết
Nguyễn Anh Dũng
Xem chi tiết
pham thi thu trang
Xem chi tiết
Trần Hữu Ngọc Minh
Xem chi tiết
Phạm Thị Ngọc Mai
Xem chi tiết
dekhisuki
Xem chi tiết
Hằng Nguyễn
Xem chi tiết