Cho các số thực dương a,b,c thỏa mãn abc=1. CMR:
\(\frac{1}{\sqrt{a^4-a^3+ab-2}}+\frac{1}{\sqrt{b^4-b^3+bc-2}}+\frac{1}{\sqrt{c^4-c^3+ac-2}}\le\sqrt{3}\)
Cho a, b, c là các số thực dương thỏa mãn \(a+b+c=1\). CMR:
\(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\le\frac{3}{2}\)
Cho a,b,c là các số thực dương thỏa mãn\(a^2+b^2+c^2=1\).
CMR:\(\frac{1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{b^2+1}}+\frac{1}{\sqrt{c^2+1}}\le\frac{9}{2\left(a+b+c\right)}\)
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng: \(\frac{\sqrt{a^2+abc}}{c+ab}+\frac{\sqrt{b^2+abc}}{a+bc}+\frac{\sqrt{c^2+abc}}{b+ca}\le\frac{1}{2\sqrt{abc}}\)
Cho a,b,c là các số dương thỏa mãn: ab + bc + ca = 3abc
CMR: \(\frac{1}{\sqrt{a^3+b}}+\frac{1}{\sqrt{b^3+c}}+\frac{1}{\sqrt{c^3+a}}\le\frac{3\sqrt{2}}{2}\)
Cho a,b,c là các số nguyên dương. CMR: \(3\le\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\le3+\sqrt{a}+\sqrt{b}+\sqrt{c}\)
cho các số thực dương a,b,c thỏa mãn abc=1. CMR:\(\frac{1}{\sqrt{a^5+b^2+ab+6}}+\frac{1}{\sqrt{b^5+c^2+bc+6}}+\frac{1}{\sqrt{c^5+a2+ca+6}}\)\(\le\)\(1\)
Tìm số nguyên dương n lớn nhất để bất đẳng thức sau thỏa mãn
\(\frac{1}{\sqrt[n]{\left(na+b+c\right)^4}}+\frac{1}{\sqrt[n]{\left(a+nb+c\right)^4}}+\frac{1}{\sqrt[n]{\left(a+b+nc\right)^4}}\le\frac{3}{16}\)
trong đó a,b,c là các số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\)
Cho ba số dương a,b,c thỏa mãn ab+ac+bc=1
CMR: P=\(\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{9}{4}\)