Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lang Hoa

Cho a,b,c là các số thỏa: a^2020+b^2020+c^2020=a^1010b^1010+b^1010c^1010+c^1010a^1010.

Tính giá trị của A = (a - b)^20+(b-c)^40+(a-c)^2020

 
☆MĭηɦღAηɦ❄
9 tháng 4 2020 lúc 15:28

\(a^{2020}+b^{2020}+c^{2020}=a^{1010}b^{1010}+b^{1010}c^{1010}+c^{1010}a^{1010}\)

\(\Leftrightarrow a^{2020}+b^{2020}+c^{2020}-a^{1010}b^{1010}-b^{1010}c^{1010}-c^{1010}a^{1010}=0\)

\(\Leftrightarrow2a^{2020}+2b^{2020}+2c^{2020}-2a^{1010}b^{1010}-2b^{1010}c^{1010}-2a^{1010}c^{1010}=0\)

\(\Leftrightarrow\left(a^{2020}-2a^{1010}b^{1010}+b^{2020}\right)+\left(b^{2020}-2b^{1010}c^{1010}+c^{2020}\right)+\left(c^{2020}-2a^{1010}c^{1010}+a^{2020}\right)=0\)

\(\Leftrightarrow\left(a^{1010}-b^{1010}\right)^2+\left(b^{1010}-c^{1010}\right)^2+\left(c^{1010}-a^{1010}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(a^{1010}-b^{1010}\right)=0\\b^{1010}-c^{1010}=0\\c^{1010}-a^{1010}=0\end{cases}}\Leftrightarrow a^{1010}=b^{1010}=c^{1010}\Leftrightarrow\pm a=\pm b=\pm c\)

Rồi thay :> Còn thay kiểu nào thì mình cũng hong biết :">

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lang Hoa
Xem chi tiết
Lê Thị Dung
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Nguyễn Thu Uyên
Xem chi tiết
Nguyen Van Hung
Xem chi tiết
Wakanda forever
Xem chi tiết
Tran Khanh Ha
Xem chi tiết
Thi Bùi
Xem chi tiết
alzxcxccxc
Xem chi tiết