Cho biểu thức P =(a+b)(b+c)(c+a) - abc với a,b,c là các số nguyên. Chứng minh rằng nếu a+b+c chia hết cho 4 thì P chia hết cho 4.
Cho M = (a+b)(b+c)(c+a) - abc (với a,b,c là các số nguyên)
Chứng minh rằng: Nếu a+b+c chia hết cho 4 thì M chia hết cho 4
Cho biếu thức A= (a+b)(b+c)(c+a)-abc với a,b,c là các số nguyên .Chứng minh nếu a+b+c chia hết cho 4 thì A chia hết cho 4.
Bài 1: cho a,b,c là số nguyên tố lớn hơn 3. Chứng minh (a-b(b-c)(c-a) chia hết cho 48.
Bài 2: cho các số nguyên dương a,b,c sao cho (a-b)(b-c)(c-a)=a+b+c. Chứng minh a+b+c chia hết cho 27.
Bài 3: Chứng minh rằng với mọi số nguyên tố lớn hơn p>3 thì 2018-2p^4 chia hết cho 96.
Chúng minh rằng: (a+b)(a+c)(b+c) - abc chia hết cho 4 nếu a+b+c chia hết cho 4
Cho a,b,c là các số nguyên. Chứng minh rằng: nếu \(a^{2014}+b^{2015}+c^{2016}\) chia hết cho 6 thì \(a^{2016}+b^{2017}+c^{2018}\) chia hết cho 6.
1, Đa thức f(x) khi chia cho x+1 dư 4 khi chia x2+1 dư 2x+3. Tìm đa thức dư khi chia f(x) cho (x+1)(x2+1)
2, Cho P=(a+b)(b+c)(c+a)-abc với a,b,c là các số nguyên. CMR nếu a+b+c chia hết cho 4 thì P chia hết cho 4
Cho đa thức P(x) = ax3 + bx2 + cx + d với a, b, c, d là các hệ số nguyên. Chứng minh rằng nếu P(x) chia hết cho 5 với mọi giá trị nguyên của x thì các hệ số a, b, c, d đều chia hết cho 5
Cho a,b,c là các số nguyên sao xcho 2a+b, 2b+c, 2c+a là các sos chính phương, biết rằng trong 3 số chính phương có 1 số chia hết cho 3. Chứng minh rằng: (a-b)(b-c)(c-a) chia hết cho 27