Cho a,b,c,d là bốn số nguyên dương, chứng minh a/b+c+d + b/a+c+d + c/a+b+d + d/a+b+c không phải là số nguyên (chứng minh nó bé hơn hai thôi cũng được)
cho a,b,c,d là các số nguyên dương thỏa mãn a2+b2=c2+d2 chứng minh rằng a+b+c+d là hợp số
Cho a,b,c,d là các số nguyên dương thỏa mãn :a2+b2=c2+d2.
Chứng minh rằng a+b+c+d là hợp số.
Cho a, b, c là các số nguyên dương thỏa mãn:
a + b + c > 0; ab + bc + ca; abc > 0
Chứng minh rằng cả 3 số đều là các số nguyên dương.
Bài 1. Tìm các số thực x thỏa mãn:
a. |3 − |2x − 1|| = x − 1
b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
c. |x − 2| + |x − 3| + ... + |x − 9| = 1 − x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số
chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|
có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn.
Cho a,b,c,d là các số nguyên và thỏa mãn điều kiện a + b = c + d và a . b + 1 = c . d, chứng minh c = d
cho các số nguyên dương a,b,c,d thỏa mãn ab=cd. chứng minh rằng A=an+bn+cn+dn là một hợp số với mọi số tự nhiên n
cho các số nguyên dương a,b,c,d thỏa mãn ab=cd. chứng minh rằng A= an+bn+cn+dnlà một hợp số với mọi số tự nhiên n
Cho các số nguyên dương a,b,c,d thỏa mãn a.b = c.d. Chứng minh rằng A= an + bn +cn + dn là một hợp số vớii mọi số tự nhiên n