Bài 1: Cho a,b,c là các số thực dương. Chứng minh:
\(\frac{a+b}{bc+a^2}+\frac{b+c}{ac+b^2}+\frac{a+c}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}.\)\(\frac{1}{c}\).
Bài 2: Cho a,b,c là các số dương thỏa mãn: abc=1.
Chứng minh rằng P= \(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{3}{2}\).
AI GIẢI GIÚP EM VỚI... NHIỀU BÀI KHÓ THẾ NÀY EM SAO LÀM NỔI!!
Cho a,b,c là các số thực dương thỏa mãn a.b.c = 1
Chứng minh rằng : \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Cho các số thực dương a, b, c thỏa mãn \(a^2+b^2+c^2=3\). Chứng minh rằng:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{3}{2}\left(a+b+c\right)\ge\frac{15}{2}\)
Cho a;b;c là các số dương thỏa mãn a+b+c=3. Chứng minh rằng: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho các số thực dương a,b,c thỏa mãn a+b+c=1
Chứng minh rằng: \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{1}{2}\)
Cho a,b,c là 3 số dương thỏa mãn: a+b+c=3.Chứng minh rằng:\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho a,b,c là các số thực dương thỏa mãn: a+b+c=abc. Chứng minh rằng:
\(\frac{b}{a\sqrt{b^2+1}}+\frac{c}{b\sqrt{c^2+1}}+\frac{a}{c\sqrt{a^2+1}}\ge\frac{3}{2}\)
Cho các số thực dương a, b, c thỏa mãn \(a\le b,a\le c\)và abc=1
Chứng minh \(a+b^2+c^2\ge\frac{1}{a}+\frac{1}{b^2}+\frac{1}{c^2}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Chứng minh rằng :
\(\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(a-c\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le2\)