a) cho a,b,c là 3 cạnh của một tam giác , p là nửa chu vi. CMR \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
b) Cho a,b,c,d là các số dương.CMR \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\)
Cho a,b,c là độ dài ba cạnh của một tam giác và p là nửa chu vi của tam giác. CMR: \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\). Dấu "=" xảy ra khi nào?
Cho a, b, c là số đo các cạnh của một tam giác và p là nửa chu vi của tam giác đó. Chứng minh \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho \(a,b,c\) là độ dài các cạnh của một tam giác và \(p\) là nửa chu vi của tam giác đó . CMR :
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a, b, c là độ dài ba cạnh của một tam giác, p là nửa chu vi. CMR:\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
cho a,b,c,p là động dài 3 cạnh và nửa chu vi của một tam giác CMR
1/p-a+1/p-b+1/p-c>/ 2(1/a+1/p+1/c)
Chứng minh rằng
a) 1/a + 1/b >= 4/ a+b với a,b >0
b) 1/ p-a + 1/p-b + 1/ p-c >= 2 * ( 1/a + 1/b + 1/c)
với a,b,c là độ dài ba cạnh của tam giác, p là nửa chu vi của tam giác đó
Các cao thu giup minh bai nay voi? cho a, b, c là độ dài ba cạnh một tam giác có chu vi bằng 1 . cmr a^2+b^2+c^2+4abc<1
Cho a, b, c là ba cạnh của tam giác , p là nửa chu vi tam giác đó. Chứng minh rằng
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)