Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hatrang

Cho a,b,c là ba số khác 0 và a+b+c khác 0 thỏa mãn:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\). Tính giá trị của biểu thức: P=\(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\)

 

Trần Thị Thùy Linh
23 tháng 12 2018 lúc 13:10

Ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Suy ra:

 \(\frac{a}{b+c}=\frac{1}{2}\Rightarrow a=\frac{b+c}{2}=\frac{1}{2}\times\left(b+c\right)\)

\(\frac{b}{a+c}=\frac{1}{2}\Rightarrow b=\frac{a+c}{2}=\frac{1}{2}\times\left(a+c\right)\)

\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow c=\frac{a+b}{2}=\frac{1}{2}\times\left(a+b\right)\)

Thay  \(a=\frac{1}{2}\times\left(b+c\right)\);  \(b=\frac{1}{2}\times\left(a+c\right)\)\(c=\frac{1}{2}\times\left(a+b\right)\) vào P ta được:

\(\frac{b+c}{\frac{1}{2}\times\left(b+c\right)}+\frac{c+a}{\frac{1}{2}\times\left(a+c\right)}+\frac{a+b}{\frac{1}{2}\times\left(a+b\right)}\)

\(=\frac{\text{ }1\text{ }}{\frac{1}{2}}+\frac{1}{\frac{1}{2}}+\frac{1}{\frac{1}{2}}\)

\(=2+2+2=6\)

Vậy giá trị của P  là 6

      


Các câu hỏi tương tự
Hãy mãi mãi là bạn tôi
Xem chi tiết
Son Goku Kha
Xem chi tiết
nguyễn dương diệu anh
Xem chi tiết
Bùi Tiến Đạt
Xem chi tiết
Lăng Nhược Y
Xem chi tiết
liem nguyen thi
Xem chi tiết
Có Anh Đây
Xem chi tiết
Nguyễn Đoàn Minh Trang
Xem chi tiết
Na Na
Xem chi tiết