ko bit đừng trả lời bừa nha mấy thánh ~~
ko bit đừng trả lời bừa nha mấy thánh ~~
Cho a,b,c là 3 số thực dương thỏa mãn điều kiện a + b + c = 1
Tìm GTLN của biểu thức:
\(P=\frac{ab}{\sqrt{c+ab}}+\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ca}}\)
Cho a,b,c là các số khác 0 thỏa mãn điều kiện
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tìm giá trị của biểu thức \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
Cho các số thực dương a, b, c thỏa mãn ab + bc + ca = abc. Chứng minh rằng \(\sqrt{\dfrac{a.\left(a+c\right)}{a+bc}}+\sqrt{\dfrac{b.\left(b+c\right)}{b+ac}}=\sqrt{a+b}\)
Tìm ba số dương a,b,c biết
\(\frac{\sqrt{ab}-1}{3}=\frac{\sqrt{bc}-3}{9}=\frac{\sqrt{ca}-5}{-6}và\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=11\)
Help me đi các bn eh !
Cho 3 số a,b,c khác 0 thỏa mãn \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị biểu thức M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Cho a, b, c là ba số khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)(các giả thiết đều có nghĩa)
Tính giá trị của biểu thức:
\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}\Leftrightarrow\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ab}\)
Cho các số a;b;c khác 0 thỏa mãn \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá tri biểu thức \(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}\)
Cho ba số a, b, c khác 0 thỏa mãn \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}.\)
Tính giá trị của biểu thức \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}.\)
Cho a,b,c là các số khác 0 thỏa mãn điều kiện \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị của biểu thức \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)