Sửa lại đề : \(A=\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\)
Chứng minh :
Đặt \(\hept{\begin{cases}x=b+c-a\\y=c+a-b\\z=a+b-c\end{cases}}\)
Vì a,b,c là độ dài 3 cạnh của 1 tam giác
nên \(x,y,z>0\)
Khi đó : \(\hept{\begin{cases}a=\frac{y+z}{2}\\b=\frac{z+x}{2}\\c=\frac{a+b}{2}\end{cases}}\)
Ta có bất đẳng thức mới theo ẩn x,y,z :
\(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\ge3\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}\right)+\frac{1}{2}\left(\frac{z}{y}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}\right)\ge3\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{1}{2}\left(\frac{y}{z}+\frac{z}{y}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{z}\right)\ge3\)
Ta chứng minh bất đẳng thức phụ :
\(\frac{a}{b}+\frac{b}{a}\ge2\forall a,b>0\)
Thật vậy : \(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\)
\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)(luôn đúng \(\forall a,b>0\))
Áp dụng ,ta được :
\(\frac{1}{2}.2+\frac{1}{2}.2+\frac{1}{2}.2\ge3\)
\(\Leftrightarrow3\ge3\)(đúng)
Vậy bất đẳng thức được chứng minh
Đặt \(b+c-a=x;a+c-b=y;a+b-c=z\)
Khi đó \(x;y;z>0\)và \(a=\frac{x+y}{2};b=\frac{x+z}{2};c=\frac{y+z}{2}\)
\(VT=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}=\frac{1}{2}\left(\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\right)\)
\(=\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}+\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}\right)=\frac{1}{2}\left(\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}+\frac{y}{x}+\frac{x}{y}\right)\)
AM - GM cho từng cặp số trên : \(VT\ge\frac{1}{2}\left(2+2+2\right)=3\)
Dấu ''='' xảy ra <=> \(x=y=z\Leftrightarrow a=b=c\)