Ta có:\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\sqrt[3]{\frac{abc}{\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)}}\)
Cần chứng minh:\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
Ta có:\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{\left(a+b-c+b+c-a\right)^2}{4}=b^2\)
\(\Rightarrow b\ge\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\)
Nhân vế theo vế =>đpcm
"="<=>a=b=c