Tìm GTNN của P=a^7+b^7+c^7 biết a^3b^3+b^3c^3+c^3a^3>=1 - Sasu ka
Tìm GTNN của P=a^7+b^7+c^7 biết a^3b^3+b^3c^3+c^3a^3>=1 - Sasu ka
a,b,c là các số thực không âm thỏa mãn a+b+c=2. Tìm max và min của \(P=\sqrt{a+b^3c^3}+\sqrt{b+c^3a^3}+\sqrt{c+a^3b^3}\)
Cho các số thực a, b, c không âm thỏa \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\). Tìm GTNN của \(P=\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)
Cho ba số thực không âm a, b, c và a + b + c = 3. Tìm giá trị nhỏ nhất của
K=√3a+1+√3b+1+√3c+1
Tìm GTLN của B= \(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ac+3a^2}\)
Biết a,b,c >=0 và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)3
cho a,b,c là các số không âm thỏa mãn : a + b + c = 3 . Tìm giá trị nhỏ nhất P = căn(3a+1) + căn(3b+1) + căn(3c+1)
Cho ba số thực không âm a, b, c và a + b + c = 3. Tìm giá trị nhỏ nhất của
\(K=\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\)
cho a, b, c là độ dài 3 cạnh 1 tam giác. CMR :
\(\frac{a}{3a-b+c}+\frac{b}{3b-c+a}+\frac{c}{3c-a+b}\ge1\)
Cho ba số thực dương a,b,c thỏa mãn a+b+c=1. Tìm GTLN của biểu thức
P=\(\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\)
1 . )
Cho 3 số a,b,c dương. Tìm giá trị lớn nhất của biểu thức
\(P=\frac{a}{2a+b+c}+\frac{b}{2b+c+a}+\frac{c}{2c+a+b}\)
2
cho các số thực không âm a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Tìm giá trị nhỏ nhất của biểu thức
\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)