https://diendantoanhoc.net/topic/80743-a2bb2cc2aabbccaleq-9/
Khá là ngại đánh máy bạn vào TKHĐ của mình xem hình ảnh nhé !
https://diendantoanhoc.net/topic/80743-a2bb2cc2aabbccaleq-9/
Khá là ngại đánh máy bạn vào TKHĐ của mình xem hình ảnh nhé !
Cho a,b,c là 3 số không âm thỏa mãn a+b+c=4 Chứng minh \(\sqrt{a\left(b+2c\right)}+\sqrt{b\left(c+2a\right)}+\sqrt{c\left(a+2b\right)}\le4\sqrt{3}\)
Cho a,b,c là các số dương không âm thỏa mãn : \(a^2+b^2+c^2\) = 3
Chứng minh rằng : \(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{1}{2}\)
Chứng minh rằng với mọi a,b,c dương thỏa mãn \(a+b+c=3\) thì:
\(\frac{a^2b}{2a+b}+\frac{b^2c}{2b+c}+\frac{c^2a}{2c+a}\le\frac{3}{2}\)
Cho a, b, c thỏa mãn \(\frac{a}{2a+b+c}+\frac{b}{2b+c+a}+\frac{c}{2c+a+b}=\frac{3}{4}.\)
Chứng minh rằng \(\frac{a^2}{2a+b+c}+\frac{b^2}{2b+c+a}+\frac{c^2}{2c+a+b}=\frac{a+b+c}{4}.\)
cho a,b,c,d không âm. Chứng minh rằng: 1/a^3+1/b^3+1/c^3+1/d^3 >= 1/a^2b+1/b^2c+1/c^2d+1/d^2a
Cho a,b,c là các số không âm thỏa mãn :
√a+√b+√c=√3√[(a+2b)(a+2c)]+√[(b+2a)(b+2c)]+√[(c+2a)(c+2b)]=3
Tính giá trị của biểu thức M=(2√a+3√b−4√c)^2.
Cho a,b,c là các số thực dương thỏa mãn \(a^2b^2+b^2c^2+c^2a^2\ge a^2b^2c^2\). Chứng minh rằng:
\(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\ge\frac{\sqrt{3}}{3}\).
Cho các số thực dương a, b, c thỏa mãn a + b + c = 3. Chứng minh rằng: \(\sqrt{2a^2+\dfrac{7}{b^2}}+\sqrt{2b^2+\dfrac{7}{c^2}}+\sqrt{2c^2+\dfrac{7}{a^2}}\ge9\)
Cho a,b,c là 3 số thực thỏa mãn a+b+c=3. Chứng minh rằng:
\(\frac{a^2}{2b+c}+\frac{b^2}{2c+a}+\frac{c^2}{2a+b}\ge\frac{2020}{3}\)